Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Mathematics-I

Subject Code: 4SC01MAT1 **Branch**: B.Sc. (All)

Semester: 1 Date: 16/03/2019 Time : 2:30 To 5:30 **Marks** : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:**

a) What is order of differential equation : $(y'')^5 + y''' + 2xy = 0$ (1)

- **b)** The solution of differential equation y'' + 2y = 0 is (1) (a) sinx (b) $\cos 2x$ (c) 2sinx (d) 2cosx
- c) True/false: Machlaurin's series is particular case of taylor's series. (1)
- **d)** Write the equation of circle having centre (0,0) and radius 5 in polar (1) form.
- e) Find 5^{th} derivative of log(2x+7). (1)
- f) True/false: Every system of linear simultaneous homogenous equation is (1) consistent.
- g) Define: Order and degree of differential equation. (2)
- **h)** Explain the difference between order and rank of matrix. (2)
- i) Give an example of differential equation which is exact also justify it. (2)
- j) Find order and degree of the differential equation (2)

$$\left(\frac{d^{8}y}{dx^{8}}\right)^{5} + \left(\frac{d^{7}y}{dx^{7}}\right)^{2} + 2xy = 0.$$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)a) Find rank of matrix: **(5)**

$$\begin{bmatrix} 3 & 4 & -2 & 1 & 2 \\ 7 & -3 & 1 & -2 & -1 \\ 3 & 1 & 0 & 1 & 3 \end{bmatrix}.$$

Solve 7x - 3y + 2z = 11, 4x - 6y - 2z = 15, 7x + 3y - 4z = 1 using b) **(5)** Cremer's method.

c) Find Eigen value of **(4)**

2 7] 2

Attempt all questions Q-3

(14)

(14)

	a)	Discuss the consistency of the system of equation	(5)
		2x - 3y + 5z = 11, $3x - 4y + 7z = -12$, $4x + 10y + 17z = 5$.	
	b)	If it is consistent then find it's solution. Find characteristic equation of matrix	(5)
		$\begin{bmatrix} 3 & 2 & 3 \\ 0 & 5 & 2 \\ 2 & 2 & 3 \end{bmatrix}.$	
		Using it find value of $A^8 - 6A^7 + 5A^6 - 3A^5 + 5A^4 - 8A^3 - 2A + I$.	
	c)	If $A = \begin{bmatrix} 30 & 2 \\ 10 & 4 \end{bmatrix}$ then verify Caley Hamilton's theorem.	(4)
Q-4	a)	Attempt all questions Solve: $(x^2 + y^2)dx - 2y^2 dy = 0$.	(14) (5)
	b)	Solve: $\frac{dx}{dy} + \frac{4y}{y^2 + 1} x = \frac{1}{(y^2 + 1)^3}$	(5)
	c)	Solve: $x \cos y dx - \frac{x^2}{2} \sin y dy = 0$	(4)
Q-5	a)	Attempt all questions Find equation of sphere which passes through $(0,0,0)$, $(3,0,0)$, $(0,4,0)$ and $(0,0,6)$.	(14) (6)
	b)	State and prove Leibnitz's theorem for n th derivative of product and find nth derivative of xsinx.	(8)
Q-6		Attempt all questions	(14)
	a)	Find n th derivative of the following:	(6)
	b)	(a) $\frac{1}{(2x+1)(2x+2)}$ (b) $\frac{2x+1}{x^2-1}$ State n th derivative of sinax and a ^x and prove it.	(4)
	c)	If $y = e^{ax} \cos(bx+c)$ then show that $y_n = (a^2 + b^2)^{\frac{n}{2}} e^{ax} \cos(bx+c+nthan^{-1}(\frac{b}{a}))$	(4)
Q-7		Attempt all questions	(14)
	a)	Express $x^5 + 4x^4 + 6x^3 - 4x + 1$ as powers of $x - 2$.	(5)
	b)	Find machlurin's series of sinhx + coshx.	(5)
	c)	Express $\sin x \cdot \cos x$ in powers of x upto x^6 .	(4)
Q-8		Attempt all questions	(14)

a) Evaluate the following:

(1)
$$x \xrightarrow{\lim} \infty (e^{x+e^{-x}} - e^x)$$
.
(2) $x \xrightarrow{\lim} \frac{\pi}{2} (\sin x)^{\tan x}$.

$$(2) x \xrightarrow{\lim \frac{\pi}{2}} (\sin x)^{\tan x}.$$

Apply Rolle's theorem for $f(x)=(2x-1)\sin \pi x$ in the interval $[\frac{1}{2}, 1]$. b) **(6)**

(6)

c) Define: Taylor's series . **(2)**

